
Bit-Level Partial Evaluation of Synchronous Circuits

Sarah Thompson
Computer Laboratory

University of Cambridge

sarah.thompson@cl.cam.ac.uk

Alan Mycroft
Computer Laboratory

University of Cambridge

am@cl.cam.ac.uk

ABSTRACT
Partial evaluation has been known for some time to be
very effective when applied to software; in this paper we
demonstrate that it can also be usefully applied to hard-
ware. We present a bit-level algorithm that supports the
partial evaluation of synchronous digital circuits. Full PE
of combinational logic is noted to be equivalent to Boolean
minimisation. A loop unrolling technique, supporting both
partial and full unrolling, is described. Experimental results
are given, showing that partial evaluation of a simple micro-
processor against a ROM image is equivalent to compiling
the ROM program directly into low level hardware.

1. INTRODUCTION
Partial evaluation [12, 14, 13] is a long-established tech-

nique that, when applied to software, is known to be very
powerful; apart from its usefulness in automatically creating
(usually faster) specialised versions of generic programs, its
ability to transform interpreters into compilers is particu-
larly noteworthy.

In this paper, we present a partial evaluation framework
for synchronous digital circuits that, whilst supporting spe-
cialisation, also supports the first Futamura projection [10]:

PE [[interpreter , program]] = compiler [[program]].

In hardware terms, this is equivalent to taking the circuit
for a processor and a program ROM image, then compiling
this into hardware that represents the program only – as
with software partial evaluation, the processor itself is op-
timised away, leaving only the functionality of the program
expressed directly in hardware.

Note that in this paper, we consider only the partial evalu-
ation of purely synchronous circuits, i.e. circuits consisting
only of acyclic networks of gates, with feedback occurring
only via D-type latches whose clock inputs are all driven by
a single global clock net. Generalisation to the asynchronous
case is discussed briefly in Section 7.1.

In Section 2 we discuss PE of combinational circuits; in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion, Charleston, South Carolina, January 9-102006
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Table 1: Rewrite Rules for Combinational PE

a ∧ a → a a ∨ a → a

a ∧ false → false a ∧ true → a

a ∨ false → a a ∨ true → true

¬false → true ¬true → false

Section 3 this is extended to encompass loop unrolling of
synchronous circuits. Section 4 introduces HarPE, the hard-
ware description language and partial evaluator used to sup-
port the experimental work leading to the results described
in Section 4.

2. PE OF COMBINATIONIAL CIRCUITS
The simplest form of hardware partial evaluation is al-

ready well known to hardware engineers, though under a
different name: Boolean optimisation. For example, the
combinational circuit represented by the expression

a ∧ (b ∨ c)

where a, b and c are inputs, may be specialised for the case
where c is known to be true as follows:

a ∧ (b ∨ true) = a ∧ true = a

Boolean optimisation is well-studied, with many approaches
documented in the literature. Some techniques are sub-
optimal but can be applied to any circuit, whereas others
(e.g. OBDDs, flattening to CNF or DNF) can yield optimal
results1 but suffer exponential size blowup when confronted
with some circuits, particularly multipliers. Any of these
techniques are potentially capable of PE of combinational
circuits, though for clarity and generality, we have opted for
a simple approach based upon term rewriting. Table 1 shows
a simple set of rewrite rules that are sufficient to implement
(sub-optimal) combinational PE in time and space that is
linear with respect to the original circuit.

The software analogue of a combinational circuit, from the
point of view of PE, would be a program consisting only of
assignment statements, if-then and if-then-else constructs,
but strictly no loops.

1In hardware terms, ‘optimal’ is not easily defined. In some
cases, circuits are optimised for minimum gate count, though
more commonly they are optimised for speed or power con-
sumption – only rarely will a circuit be optimal with respect
to more than one of these considerations.

Figure 1: General Form of Synchronous Circuits
input

State f g output

CLK

3. PE OF SYNCHRONOUS CIRCUITS
A slight variation2 on the general form of any synchronous

circuit, generally referred to as a Mealy machine [17], is
shown in Fig. 1. In software terms, such circuits resemble a
program of the form

while true
statek+1 := f(statek, input)
output := g(statek+1, input)

endwhile

Each iteration of the loop represents exactly one clock cy-
cle. The internal state of the circuit, represented by statek,
may change only once per clock cycle and is determined
only by the result of the combinational Boolean function
f : (B×· · ·×B)×(B×· · ·×B) → (B×· · ·×B); the subscript
k has no effect on execution, and is purely a naming con-
vention that is convenient when describing unrolling. The
input is assumed to change synchronously with the clock,
and the output is determined by the combinational Boolean
function g : (B × · · · × B) × (B × · · · × B) → (B × · · · × B).
Note that the internal state of the circuit, represented by
state, is observable only through g.

Partial evaluation of this kind of circuit typically requires
specialisation of f and g, but may also involve either partly
or completely unrolling the while loop. State minimisation
is not performed3. A single unrolling yields the program

while true
statek+1 := f(statek, input1)
output1 := g(statek+1, input1)
statek+2 := f(statek+1, input2)
output2 := g(statek+2, input2)

endwhile

which can be equivalently expressed as

while true
statek+2 := f(f(statek, input1), input2)
output1 := g(f(statek, input1), input1)
output2 := g(f(f(statek, input1), input2), input2)

endwhile

2Conventionally, f would be drawn on the left of the state
flip-flops. This (equivalent) form allows unrolling to be de-
scribed more conveniently.
3In synchronous circuits, state minimisation is often unde-
sirable – though it reduces flip flop count, the extra state de-
coding logic required often adversely affects maximum clock
rates. As an extreme example, the performance advantages
of a carefully designed one-hot encoded state machine might
be lost entirely if state minimisation was to be näıvely at-
tempted.

Figure 2: Synchronous Circuit After One Unrolling

output1

output2State f gf

g

input2

input1

CLK

corresponding to the circuit shown in Fig. 2. After unrolling,
since statek+1 is not externally observable, it need not be
explicitly computed. In one clock cycle, this new circuit
performs the same computations that the original circuit
performed in two cycles, though possibly with a slower max-
imum clock rate due to longer worst-case paths.

In the general case, since the input i and outputj may
change at every cycle, they may need to be separately ac-
cessible in the unrolled circuit. Often, though, input may
be known to remain unchanged for many iterations, or for
all time. It is common, also, for outputs other than those
resulting from the final state to be unimportant; in com-
bination, this allows loop unrolling to generate much more
efficient hardware.

In the rest of this paper, we make the assumption that
input may change only synchronously with the the clock of
the generated hardware, and that output reflects the final
state of the unrolled loop body at the end of each clock
cycle.

3.1 Multiple Unrollings
Loops may be unrolled an arbitrary number of times by

the following method:

while true
statek+1 := f(statek, input)
statek+2 := f(statek+1, input)
. . .
statek+n := f(statek+n−1, input)
output := g(statek+n, input)

endwhile

or, equivalently:

while true
statek+n := f(f(. . . f(statek, input), . . . input)
output := g(statek+n, input)

endwhile

Since the repetition of input gives potential for common
subexpression elimination, and g needs to be evaluated ex-
actly once regardless of the number of unrollings (see Fig. 3),
the gate count of any resulting circuit is typically (and often
substantially) less than n × |f | + |g|, where |f | is the gate
count of the original f , |g| is the gate count of the original g,
and n is the number of unrollings. In some cases, the final
gate count may even be less than |f | + |g| (see Section 4).

Figure 3: Synchronous Circuit After n Unrollings

outputState f gf

CLK

input

. . .

3.2 Reset Logic
Most synchronous circuits require some form of reset ca-

pability, corresponding to the following program:

state1 := initialstate
while true

statek+1 := f(statek, input)
output := g(statek+1, input)

endwhile

In pure-synchronous hardware terms, since state may only
change at a clock edge, it is not possible to have code exe-
cute outside the loop, so practical implementations usually
resemble the following:

while true
if reset = true

statek := initialstate
endif

statek+1 := f(statek, input)
output := g(statek+1, input)

endwhile

Here, reset is a special synchronous input that causes state
to be reset to initialstate if it is held true for one or more
cycles. Note that, in this form, the circuit is just a special
case of the general definition given in Section 3.

3.3 Full Unrolling
Where repeated application of f reaches a fixed point, i.e.

where

state0 = initialstate

statek+1 = f(statek, input)

and there exists an n such that for all values of input ,
staten+1 = staten, it is possible to fully unroll (and therefore
eliminate) the while loop:

state0 := initialstate
state1 := f(state0, input)
state2 := f(state1, input)
. . .
staten := f(staten−1, input)
output := g(staten, input)

Any resulting circuit will be purely combinational (see Fig. 4);
all D-type flip flops will have been eliminated.

4. THE HARPE LANGUAGE
HarPE (pronounced ‘harpie’) is a simple hardware de-

scription language created specifically to aid experimenta-
tion in partial evaluation. As is becoming increasingly com-
mon [4], HarPE is an embedded language, existing within

Figure 4: Synchronous Circuit After Full Unrolling

outputf gf

input

finitial
state

. . .

a larger, more sophisticated general purpose programming
language, in this case C++.

The HarPE language currently exists as an ISO C++ tem-
plate library, taking advantage of template metaprogram-
ming techniques [26, 27]. Compiling and then executing a
C++ source file incorporating HarPE code causes a hard-
ware netlist to be generated. The current compiler generates
gate-level Verilog for further processing by a conventional
tool chain.

4.1 Semantics
HarPE source code has a standard, imperative semantics,

with the characteristic that a whole program defines exactly
one machine cycle. An implicit outer while loop, execut-
ing once per clock cycle, is assumed, where one execution
of the loop body corresponds to exactly one clock cycle4

Partial evaluation is carried out aggressively as compilation
proceeds.

As a simple example, the following program

Bit reset(“reset”);
IntReg〈8〉 a;
a = a + 1;
If(reset);

a = 0;
EndIf();
Output(“a”, a);

implements an 8-bit up counter with a synchronous reset
input. The generated circuit outputs one count per clock
cycle; though the source code has an imperative semantics,
sequential composition does not mean that one or more clock
cycles must take place – rather, in all cases, sequential com-
position requires exactly zero clock cycles.

4.2 Types

4.2.1 Bit

The fundamental type within HarPE is Bit, representing
a single bit. Declarations follow C++ syntax:

Bit a, b;

C++ operator overloading [21] is used to implement the
logical operators representing and, or and not:

Bit a, b, c, d, e;
c = a & !b;
d = b | c;
e = a | d;

4This convention is also adopted by Verilog, though some
other hardware description languages (notably Handel-C [5])
explicitly describe behaviour over many cycles.

Figure 5: A 1-bit ‘Counter’

D Q

D-Type
Flip Flop

CLK

output

By default, Bit variables are initialised to false, so

Bit a;
Output(“a”, a);

will result in an output, labelled “a”, that is connected di-
rectly to false (ground).

4.2.2 BitReg

D-type flip flops are represented by the BitReg type. BitReg
behaves almost identically to Bit, with the exception that
variables are initialised to reference a D-type flip flop. Any
modifications to the value of a BitReg variable are incorpo-
rated into the feedback loop of the flip flop.

The circuit shown in Fig. 5 results from the following code:

BitReg a;
a = !a;

4.2.3 Int〈n〉

A variable of type Int〈n〉 represents a n-bit wide unsigned
integer, implemented as an array of Bits, with operator
overloads supporting the usual arithmetic operators. Since
Bit’s functionality is inherited, Ints are initialised to 0.

A number of alternative constructors are supported, in-
cluding numeric constants, though they must be explicitly
introduced (see the example in Section 4.1). For example,
the following code generates an 8-bit multiplier:

Int〈8〉 a, b, c;
c = a ∗ b;

Individual bits within an Int may be addressed through
the standard C++ array notation:

Int〈8〉 a;
Bit b;
b = a[3];
a[4] = a[1];

If the subscript is a compile-time constant, HarPE simply
provides access to the relevant underlying Bit. Where the
subscript is itself an Int-valued expression, HarPE generates
an appropriate multiplexer circuit.

4.2.4 IntReg〈n〉

IntReg is to Int what BitReg is to Bit; it allows multi-
bit registers (normally representing unsigned integers) to be
defined straightforwardly. As with Int, overloaded numeric
operators support the usual arithmetic functions.

4.3 Inputs
Inputs are introduced by passing a parameter to the con-

structor of Bit or Int:

Bit x(“x”), y(“y”), z;
z = x | y;

In this example, z represents the output of an or gate whose
inputs are the external inputs x and y.

Similar functionality is provided by Int:

Int〈8〉 a(“a”), b(“b”), c;
c = a + b;

In this case, a pair of 8-bit input ports (named a[0..7] and
b[0..7] in the netlist) are declared, with c representing the
output of an 8-bit adder whose inputs are a and b.

4.4 Outputs
All outputs must be declared through the overloaded func-

tion Output(“name”, expression) , which can accept vari-
ables or expressions of type Bit, BitReg, Int or IntReg:

Bit x(“x”), y(“y”), z;
Int〈8〉 a(“a”), b(“b”), c;
z = x | y;
c = a + b;
Output(“z”, z);
Output(“c”, c);
Output(“q”, x & y);

4.5 Compilation of Control Flow Constructs
The HarPE compiler flattens all control flow, so programs

that do not require D-type flip flops (i.e. those programs
that do not use variables of type BitReg or IntReg) always
generate purely combinational hardware – such programs,
in effect, execute in exactly zero clock cycles. When D-type
flip flops are used, HarPE programs define what happens
during exactly one clock cycle of the generated hardware.
In this section, we describe how this is achieved.

4.5.1 Guarded Assignment
During compilation, HarPE maintains at all times a guard

expression, Γ, that represents whether or not assignment
statements should take place. At the start of compilation,
Γ = true, so all assignments are valid. Control flow state-
ments ‘and’ extra terms into Γ. The HarPE compiler main-
tains a closure stack, allowing block structured code with
arbitrary nesting depth to be handled.

All assignment statements in HarPE, e.g.:

var = newvalue;

are transformed internally to the following form:

var ′ =

(

var iff Γ = false,

newvalue iff Γ = true

All subsequent references to var in the program are renamed
to var ′. At bit level, this is equivalent to a simple multi-
plexer:

var ′ = (Γ ∧ newvalue) ∨ (¬Γ ∧ var).

Where Γ = true, this simplifies to var ′ = newvalue. If
Γ = false, the assignment simplifies to var ′ = var , i.e. the

assignment has no effect. As a consequence, multiplexers
are only generated when they are actually necessary.

Guarded assignment has close parallels with existing work
on static single assignment (SSA) form [9], though since con-
trol flow is fully incorporated into assignments, there is no
equivalent of SSA’s Φ-functions (control flow merge points).

4.5.2 If..Else..EndIf

The If..Else..EndIf control structure introduces the re-
sult of a conditional expression to the guard of all statements
within its scope, e.g.:

[[Γ]]
If(cond1);

[[Γ ∧ cond1]]
If(cond2);

[[Γ ∧ cond1 ∧ cond2]]
Else();

[[Γ ∧ cond1 ∧ ¬cond2]]
EndIf();
[[Γ ∧ cond1]]

EndIf();
[[Γ]]

Note that, following the usual convention, the Else clause
may be omitted.

In the following example, an If construct implements a
reset circuit for a 3 element ‘one hot’ encoded shift register:

BitReg a1, a2, a3;
Bit rst(“rst”), x;
If(rst);

a1 = 1;
a2 = a3 = 0;

EndIf();
x = a3; a3 = a2; a2 = a1; a1 = x;

HarPE flattens this into the equivalent of the following:

BitReg a1, a2, a3;
Bit rst(“rst”), x;
a1 = (rst & 1) | (¬rst & a1);
a2 = (rst & 0) | (¬rst & a2);
a3 = (rst & 0) | (¬rst & a3);
x = a3; a3 = a2; a2 = a1; a1 = x;

4.5.3 While..EndWhile

The HarPE While..EndWhile construct provides support
for loop unrolling where the number of times the loop should
execute may only be determined at run time, though a con-
stant upper bound is necessary in order for compilation to
terminate. The code sequence

Int〈3〉 a(1), b(0), c(“stop”);
While(b < 3 & !c[b]);

a = a ∗ a

b = b + 1
EndWhile();

loops through the bits of c, squaring the value of a each
time as a side-effect, stopping either when the relevant bit
of c is true or when the upper bound, 3, is reached. HarPE
unrolls the loop equivalently to the following series of nested
If statements:

Figure 6: Altera EPXA1 Development Board

Int〈3〉 a(1), b(0), c(“stop”);
If(b < 3 & !c[b]);

a = a ∗ a

b = b + 1
If(b < 3 & !c[b]);

a = a ∗ a

b = b + 1
If(b < 3 & !c[b]);

a = a ∗ a

b = b + 1
EndIf();

EndIf();
EndIf();

Unrolling terminates when the condition of the While..EndWhile
loop can be determined to be false by combinational rewrit-
ing.

5. EXPERIMENTAL RESULTS

5.1 Test Environment and Experimental Pro-
cedures

For all of these experiments, code was compiled by HarPE,
generating gate-level Verilog, which was then passed to Al-
tera’s Quartus II tool chain [2]. Each resulting circuit was
compiled for an Altera Excalibur EPXA1F484C1 FPGA [1],
then examined using the simulation tools within Quartus.
Selected designs were uploaded to an Altera EPXA1 de-
velopment board (see Fig. 6), though as this has a fixed
25MHz clock, timing information quoted below was calcu-
lated by post-layout timing simulation by the tool chain
for designs that required a substantially different rate. The
pure-combinational circuits were not characterised for tim-
ing.

5.1.1 Empty Circuit
To ensure that the gate count and other similar statistics

were not skewed by something similar to the overhead of
library code familiar in the software world, the following
code

Int〈7〉 c(0);
Output(“R1”, c);

was compiled and passed through the Quartus II tool chain.
The test confirmed that, as expected, zero gates and zero
flip flops were emitted by HarPE, resulting in a test FPGA
which used zero logic elements (LEs).

5.2 Combinational PE

5.2.1 Specialising an Adder
The (unspecialised) program

Int〈7〉 a(“a”), b(“b”);
Int〈7〉 c;
c = a + b;
Output(“R1”, c);

causes HarPE to emit 91 gates. Specialising b to the numeric
value 1, i.e.

Int〈7〉 a(“a”), b(1);

reduces the gate count to 36. In a cases where both a and b

are specialised, e.g.:

Int〈7〉 a(25), b(9);

exactly zero gates are generated. Note that, as in all of these
tests, HarPE performs partial evaluation only at bit level –
it has no higher level rules dealing with integers or any other
more complex data types.

Tying both inputs of the adder together:

c = a + a;

also results in a zero gate count, generating only wiring that
performs a ‘shift left’ operation. Again, this results directly
from bit level PE without higher level rules being necessary.

5.2.2 Specialising a Multiplier
Replacing c = a+b in the test case shown in Section 5.2.1

with

c = a ∗ b;

generates a 7bit × 7bit multiplier, emitting 443 gates. Spe-
cialising b to take the value 5 reduces this to just 58 gates.

The code

c = a ∗ a;

generates a ‘squarer’ by tying the multiplier’s inputs to-
gether. In this case the resulting gate count is 432, some-
what improved on the unspecialised version, though not so
spectacularly as for addition.

Table 2: Loop Unrolling a 7-bit Up Counter

Loops per Cycle Gates DFFs LEs Max Clk

1 35 7 16 257MHz

2 69 7 13 257MHz

3 103 7 22 183.35Mhz

50 1701 7 18 257Mhz

Table 3: Loop Unrolling a Fibonacci Counter

Loops per Cycle Gates DFFs LEs Max Clk

1 107 14 38 163.03MHz

2 191 14 51 120.5MHz

3 275 14 52 96.83MHz

5 443 14 83 73.16MHz

5.3 Synchronous PE

5.3.1 Loop Unrolling of a Simple Counter
A simple, 7-bit up counter may be implemented as fol-

lows5:

IntReg〈7〉 reg;
reg = reg + 1;
Output(“out”, reg);

This circuit is particularly amenable to loop unrolling – see
Table 2 for timing and gate count results. The disparity
between the number of gates emitted by HarPE and the
number of LEs generated by the Quartus II tool chain is
indicative that the latter’s more sophisticated combinational
optimisation is successfully collapsing multiple increments
into a single constant addition. Since HarPE emits purely
bit-level Verilog, this optimisation must again be entirely
bit-level in nature.

5.3.2 Loop Unrolling a Fibonacci Series Counter
The code

IntReg〈7〉 a, b;
Int〈7〉 temp;
Bit reset(“rst”);
If(reset);

a = 1;
b = 0;

EndIf();
temp = a + b;
b = a;
a = temp;
Output(“out”, a);

implements a specialised counter that outputs the Fibonacci
series (1, 2, 3, 5, 8, 13, 21, 34, . . .). These test cases, and those
of Section 5.3.3, are loosely based on an example due to Page
& Luk [20]. Test results are shown in Table 3. This time,
maximum clock rate falls off as the number of unrollings in-
creases – this is an expected (if not entirely welcome) feature
of PE, and is caused by increasing propagation delays due
to longer, more complex data paths.

5Note that there is an implicit outer while loop – see also
Section 4.1

Table 4: Experimental Results for Partial Evaluation of a Small Processor

Gates DFFs LEs Max Clk Run Time

Unmodified, 2 cycles per instruction 2029 75 646 27.48MHz 5.6µS (at 25MHz)

Merged fetch/execute, 1 instruction per cycle 1810 67 588 28.3MHz 2.8µS (at 25MHz)

2 × unrolled, 2 instructions per cycle 3883 67 1426 16.05MHz 2.37µS (at 15MHz)

4 × unrolled, 4 instructions per cycle 8029 67 2776 8.72MHz 2.1µS (at 8.33MHz)

Fully unrolled, 1 loop iteration per cycle 107 14 36 153.92MHz 70nS (at 150MHz)

Table 5: Instruction Set
Opcode Mnemonic Description

000 SKIP Do nothing

001 LDC acc := operand

010 LDA acc := mem[operand]

011 STA mem[operand] := acc

100 ADDA acc := acc + mem[operand]

101 JMP ip := operand

110 STOP Halt

5.3.3 Partial Evaluation of a Small Processor
Loosely following [20] we define a small, 7-bit microproces-

sor with one 7-bit general purpose register, 8 bytes of RAM
and 8 bytes of ROM. Both the RAM and ROM are mapped
into a single 16 byte address space, with address 0..7 be-
ing RAM and 8..15 being ROM. The contents of address 13
(labelled R1 in the assembler source below) are externally
visible as a 7 bit output port for simulation and verification
purposes.

Instructions are all single byte, with the 3 most significant
bits representing an opcode and the 4 least significant bits
representing a single operand. The supported instruction
set is shown in Table 5.

In all tests shown here, the ROM contains the following
program:

R1 = 13
R2 = 14
X = 15

start : LDA R2

ADDA R1

STA X

LDA R2

STA R1

LDA X

STA R2

JMP start

A hardware reset circuit preinitialises R2 with the value 1.
All other locations are initialised to 0. Since the program
loops forever unless externally terminated, run times were
measured by layout aware timing simulation in Quartus II,
measuring from the falling edge of the reset pulse to the
time that R1 reaches the arbitrarily chosen value 34 decimal
(0100010 binary).

The basic processor was implemented in HarPE and in-
strumented to allow various levels of loop unrolling to be
applied. Test results are shown in Table 4. Without un-
rolling, the processor requires 2029 gates (646 LEs), and ex-

ecutes one instruction every 2 clock cycles due to an explicit
two phase fetch/execute cycle. Flattening this to one cycle,
somewhat surprisingly, reduces the gate count and maintains
a roughly similar maximum clock rate, halving the run time
of the program6. Further unrolling generated versions of the
processor that executed 2 and 4 instructions per clock cy-
cle – simulation showed that these versions worked correctly,
but increasing worst case propagation delays appeared to re-
strict the practical speedups that could be achieved.

Fully unrolling the loop so that the entire loop executes
one iteration per clock cycle causes a dramatic reduction in
gate count along with a large increase in speed. The result-
ing circuit compares well with the simple Fibonacci counter
described in Section 5.3.2 – partial evaluation apparently
optimises away the processor, leaving behind only the hard-
ware necessary to implement the ROM program.

6. RELATED WORK
The first author’s 1991 M.Sc thesis [22] described a hard-

ware compiler based upon partial evaluation – this paper
significantly extends that work and places it in a modern
context. In other work [25], HarPE has been used to flatten
circuits (in this case, small areas of an FPGA) to a combi-
national form suitable for analysis by a SAT solver.

The Dynamic Synthesis of Correct Hardware project [16,
15] at the University of Glasgow, which ran from May 1997
to May 1999, reported encouraging results from bit-level
combinational PE, though did not address loop unrolling.
The Bluespec hardware compiler [3] performs more exten-
sive partial evaluation, though at an earlier compiler phase
(i.e. not at bit-level).

7. CONCLUSIONS
The experimental results shown in Section 5 clearly show

that partial evaluation of synchronous hardware is feasible.
Partial loop unrolling offers designers an ability to specify
circuits relatively simply, then transform them into faster
(though possibly more complex) circuits purely by trans-
formation. Full unrolling goes further, making it possible
(as demonstrated in Section 5.3.3) to transform a processor
and a ROM image into equivalent, low-level dedicated hard-
ware – potentially, any synchronous soft core processor, in
conjunction with a suitable partial evaluator, can be used as
a hardware compiler for the machine language interpreted
by the soft core itself.

In all of our tests, partial evaluation gave a net speed
gain in comparison with the original circuit. In some cases,

6Though the reason for this reduction is unclear, it seems
likely to be an artefact of our very simple fetch/execute im-
plementation and is unlikely to be exhibited when specialis-
ing more complex processors.

gate count was also reduced. Full unrolling gave the most
extreme results, with a 2 orders of magnitude speed up and 1
order of magnitude reduction in gate count.

7.1 Future Work

7.1.1 Automated Retiming/Pipelining
The timing information in Section 4 indicates that in-

creasing worst-case path delays place a limit on the level
of speedup that can be achieved with loop unrolling. Such
circuits would almost certainly gain significantly in perfor-
mance if they were pipelined and/or retimed [6], so it would
be highly desirable to develop a technique that achieves this
automatically, perhaps by bit-level transformation of the cir-
cuit. This would appear to be relatively straightforward for
combinational circuits (and hence also any fully-unrolled
synchronous circuit), but pipelining partially unrolled cir-
cuits appears to be non-trivial.

7.1.2 PE of Asynchronous Circuits
Performing PE of asynchronous circuits is fundamentally

more difficult than the equivalent transformation of syn-
chronous circuits. Rewrite rules that are perfectly safe when
applied to synchronous circuits may alter the dynamic be-
haviour of asynchronous circuits [24, 23], introducing dan-
gerous glitch states that could cause the circuit to function
erratically, if at all. Restricting a partial evaluator only to
known, safe, rewrite rules is one possible way forward which
is likely to be suitable for specialisation, but no straightfor-
ward equivalent to loop unrolling appears to exist.

7.1.3 Abstract Interpretation
Abstract interpretation [7, 8] is often used in combination

with PE, usually to determine whether or not it is appro-
priate to unroll loops. Applying similar techniques, such as
representing values as convex polyhedra, may make it pos-
sible, for example, to optimise a soft core CPU against a
particular program without performing full loop unrolling –
the CPU’s architecture could be retained, with hardware
required for unused instructions optimised away.

7.1.4 Extending HarPE
The current implementation of HarPE supports experi-

mental work (as in Section 5) quite well, but is not yet suit-
able for production quality hardware design. Extending its
capabilities to better match the architecture and capabili-
ties of contemporary target platforms (FPGAs, ASICs, etc.)
would be required in order to make it suitable for commer-
cial use.

7.1.5 PE of an Existing Soft Core
In Section 5.3.3, partial evaluation of a very simple mi-

croprocessor was demonstrated. Attempting a similar ex-
periment based on an existing soft core CPU, rather than a
purpose-built example, is a logical next step. Repeating the
full unrolling experiment would be of particular interest.

Acknowledgements
The first author wishes to thank Big Hand Ltd., NASA,
Intel, EPSRC and St Edmund’s College, Cambridge for fi-
nancially supporting this work. Experimental work relied
heavily on software and equipment donated by Altera, for
which grateful thanks are also due.

8. REFERENCES
[1] Excalibur Device Overview Data Sheet, V2.0. Altera,

2002. DS-EXCARM-2.0.

[2] Quartus II Development Software Handbook, V4.0.
Altera, 2004.

[3] Arvind. Bluespec: A language for hardware design,
simulation, synthesis and verification (Invited Talk),.
In First ACM and IEEE International Conference on
Formal Methods and Models for Co-Design
(MEMOCODE’03) (2003), p. 249.

[4] Bjesse, P., Claessen, K., Sheeran, M., and

Singh, S. Lava: Hardware design in Haskell. In
International Conference on Functional Programming
(1998), ACM.

[5] Celoxica. Handel-C language reference manual.
Available from http://www.celoxica.com/.

[6] Cong, J., and Wu, C. FPGA synthesis with
retiming and pipelining for clock period minimization
of sequential circuits. In Proceedings of the 34th
annual conference on Design automation conference
(1997), ACM Press, pp. 644–649.

[7] Cousot, P., and Cousot, R. Abstract
interpretation: a unified lattice model for static
analysis of programs by construction or approximation
of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Los Angeles,
California, 1977), ACM Press, New York, NY,
pp. 238–252.

[8] Cousot, P., and Cousot, R. Systematic design of
program analysis frameworks. In Conference Record of
the Sixth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(San Antonio, Texas, 1979), ACM Press, New York,
NY, pp. 269–282.

[9] Cytron, R., Ferrante, J., Rosen, B., Wegman,

M., and Zadeck, F. Efficiently computing static
single assignment form and the control dependence
graph. ACM Transactions on Programming Languages
and Systems 13, 4 (1991), 451–490.

[10] Futamura, Y. Partial evaluation of computation
process – an approach to a compiler-compiler. In
Systems, Computers, Control (1971), vol. 2 issue 5,
pp. 45–50.

[11] Hymans, C. Checking safety properties of behavioral
VHDL descriptions by abstract interpretation. In 9th
International Static Analysis Symposium (SAS’02)
(2002), vol. 2477 of Lecture Notes in Computer
Science, Springer, pp. 444–460.

[12] Jones, N., Gomard, C., and Sestoft, P. Partial
Evaluation and Automatic Program Generation.
Englewood Cliffs, NJ: Prentice Hall, 1993.

[13] Lombardi, L. Incremental computation. In Advances
in Computers, vol. 8, F. Alt and M. Rubinoff, Eds.
New York: Academic Press, 1967, pp. 247–333.

[14] Lombardi, L., and Raphael, B. Lisp as the
language for an incremental computer. In The
Programming Language Lisp: Its Operation and
Applications (1964), E. Berkeley and D. Bobrow, Eds.,
Cambridge, MA: MIT Press, pp. 204–219.

[15] McKay, N., Melham, T., Susanto, K. W., and

Singh, S. Dynamic specialisation of XC6200 FPGAs

by partial evaluation. In IEEE Symposium on FPGAs
for Custom Computing Machines (1998), K. L. Pocek
and J. M. Arnold, Eds., IEEE Computer Society,
pp. 308–309.

[16] McKay, N., and Singh, S. Dynamic specialisation of
XC6200 FPGAs by partial evaluation. In
Field-Programmable Logic and Applications: From
FPGAs to Computing Paradigm: 8th International
Workshop, FPL’98, Estonia, 1998 (1998), R. W.
Hartenstein and A. Keevallik, Eds., vol. 1482 of
Lecture Notes in Computer Science, Springer-Verlag,
pp. 298–307.

[17] Mealy, G. H. A method for synthesizing sequential
circuits. In Bell System Technical Journal (1955),
vol. 34, pp. 1045–1079.

[18] Mycroft, A., and Jones, N. D. A relational
framework for abstract interpretation. In Lecture
Notes in Computer Science: Proc. Copenhagen
workshop on programs as data objects (1984), vol. 215,
Springer-Verlag.

[19] Mycroft, A., and Sharp, R. W. Hardware
synthesis using SAFL and application to processor
design. In Lecture Notes in Computer Science: Proc.
CHARME’01 (2001), vol. 2144, Springer-Verlag.

[20] Page, I., and Luk, W. Compiling Occam into
FPGAs. In FPGAs, W. Moore and W. Luk, Eds.
Abingdon EE&CS Books, 1991, pp. 271–283.

[21] Stroustrup, B. The C++ Programming Language.
Addison-Wesley, Reading, Massachusetts, USA, 1991.

[22] Thompson, S. Hardware compilation as an
alternative computation architecture. Master’s thesis,
University of Teesside, 1991.

[23] Thompson, S., and Mycroft, A. Abstract
interpretation of combinational asynchronous circuits.
In 11th International Static Analysis Symposium
(SAS’04) (2004), R. Giacobazzi, Ed., vol. 3148 of
Lecture Notes in Computer Science, Springer-Verlag,
pp. 181–196.

[24] Thompson, S., and Mycroft, A. Sliding window
logic simulation. In 15th UK Asynchronous Forum
(2004), Cambridge.

[25] Thompson, S., Mycroft, A., Brat, G., and

Venet, A. Automatic in-flight repair of FPGA cosmic
ray damage. In Proc. 1st Disruption in Space
Symposium (July 2005).

[26] Veldhuizen, T. Using C++ template metaprograms.
C++ Report 7, 4 (May 1995), 36–43. Reprinted in
C++ Gems, ed. Stanley Lippman.

[27] Veldhuizen, T. L. C++ templates as partial
evaluation. In Proceedings of PEPM’99, The ACM
SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation, ed. O.
Danvy, San Antonio (Jan. 1999), University of
Aarhus, Dept. of Computer Science, pp. 13–18.

